Critical behavior of random walks.

نویسندگان

  • Campos
  • Tarancón
چکیده

We have numerically studied the trapping problem in a two-dimensional lattice where particles are continuously generated. We have introduced interaction between particles and directionality of their movement. This model presents a critical behaviour with a rich phase structure similar to spin systems. We interpret a change in the asymptotic density of particles as a phase transition. For high directionality the change is abrupt, possibly of rst order. For small directionality the phase transition is of higher order. We have computed the phase diagram, the volume dependence of the critical point, and the relaxation time of the system in the large volume limit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization transition of biased random walks on random networks.

We study random walks on large random graphs that are biased towards a randomly chosen but fixed target node. We show that a critical bias strength bc exists such that most walks find the target within a finite time when b > bc. For b < bc, a finite fraction of walks drift off to infinity before hitting the target. The phase transition at b=bc is a critical point in the sense that quantities su...

متن کامل

Spherically symmetric random walks. II. Dimensionally dependent critical behavior.

A recently developed model of random walks on a D-dimensional hyperspherical lattice, where D is not restricted to integer values, is extended to include the possibility of creating and annihilating random walkers. Steady-state distributions of random walkers are obtained for all dimensions D.0 by solving a discrete eigenvalue problem. These distributions exhibit dimensionally dependent critica...

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

Critical Random Walk in Random Environment on Trees

We study the behavior of Random Walk in Random Environment (RWRE) on trees in the critical case left open in previous work. Representing the random walk by an electrical network, we assume that the ratios of resistances of neighboring edges of a tree Γ are i.i.d. random variables whose logarithms have mean zero and finite variance. Then the resulting RWRE is transient if simple random walk on Γ...

متن کامل

From Random Walks to Critical Phenomena and Conformal Field Theory

In class, we approached critical phenomena from the view point of correlation functions and discussed renormalization group methods for obtaining values of critical exponents. Here I discuss a parallel idea that studies critical phenomena from properties of random curves which form the domain walls of the critical system. It will be shown that such random curves obey a stochastic differential e...

متن کامل

Gaussian Networks Generated by Random Walks

We propose a random walks based model to generate complex networks. Many authors studied and developed different methods and tools to analyze complex networks by random walk processes. Just to cite a few, random walks have been adopted to perform community detection, exploration tasks and to study temporal networks. Moreover, they have been used also to generate scale-free networks. In this wor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 50 1  شماره 

صفحات  -

تاریخ انتشار 1994